Alt-Coin Trader

The Unbearable Complexity of Climate

Unfortunately, while the physics is simple, the climate is far from simple. It is one of the more complex systems that we have ever studied. The climate is a tera-watt scale planetary sized heat engine. It is driven by both terrestrial and extra-terrestrial forcings, a number of which are unknown, and many of which are poorly understood and/or difficult to measure. It is inherently chaotic and turbulent, two conditions for which we have few mathematical tools.

The climate is comprised of five major subsystems — atmosphere, ocean, cryosphere, lithosphere, and biosphere. All of these subsystems are imperfectly understood. Each of these subsystems has its own known and unknown internal and external forcings, feedbacks, resonances, and cyclical variations. In addition, each subsystem affects all of the other subsystems through a variety of known and unknown forcings and feedbacks.

Then there is the problem of scale. Climate has crucially important processes at physical scales from the molecular to the planetary, and at temporal scales from milliseconds to millennia.

As a result of this almost unimaginable complexity, simple physics is simply inadequate to predict the effect of a change in one of the hundreds and hundreds of things that affect the climate. I will give two examples of why "simple physics" doesn't work with the climate — a river, and a block of steel. I'll start with a thought experiment with the block of steel.

Suppose that I want to find out about how temperature affects solids. I take a 75 kg block of steel, and I put the bottom end of it in a bucket of hot water. I duct tape a thermometer to the top end in the best experimental fashion, and I start recording how the temperature change with time. At first, nothing happens. So I wait. And soon, the temperature of the other end of the block of steel starts rising. Hey, simple physics, right?

To verify my results, I try the experiment with a block of copper. I get the same result, the end of the block that's not in the hot water soon begins to warm up. I try it with a block of glass, same thing. My tentative conclusion is that simple physics says that if you heat one end of a solid, the other end will eventually heat up as well.

So I look around for a final test. Not seeing anything obvious, I have a flash of insight. I weigh about 75 kg. So I sit with my feet in the bucket of hot water, put the thermometer in my mouth, and wait for my head to heat up. This experimental setup is shown in Figure 1 above.

After all, simple physics is my guideline, I know what's going to happen, I just have to wait.

And wait … and wait …

As our thought experiment shows, simple physics may simply not work when applied to a complex system. The problem is that there are feedback mechanisms that negate the effect of the hot water on my cold toes. My body has a preferential temperature which is not set by the external forcings.

Read More